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A cold electron gas fills the lowest Landau level for high enough magnetic fields 
and for low enough densities. Such a situation is expected to occur for the 
Malmberg-O'Neil experiment and also for pulsar crusts and atmospheres. Such 
plasmas behave as a quasi-one-dimensional system and exhibit some peculiarities 
in their wave structure. We study the dispersion and damping of the low 
frequencies, i.e., the whistler mode, and the extraordinary mode for zero tem- 
perature. The behavior of the whistler mode depends critically on the "filling 
number" ~Fc =sF/h~, where e F is the Fermi energy and I) is the cyclotron 
frequency. The one-dimensional character of the system affects the pair excitation 
spectrum and thus the decay of modes. We find that, in contrast to the three- 
dimensional situation, the plasma mode and the extraordinary mode remain 
undamped, while the whistler mode is undamped for all but very high k values. 

1. I N T R O D U C T I O N  

The propert ies  o f  a nonrelativistic qua n t um plasma in a neutralizing 
background  in an external magnet ic  field have been treated in many  papers  
since the early 1960s. Stephen (1963) calculated the longitudinal  dispersion 
relation for  p ropaga t ion  vector  parallel and perpendicular  to a magnet ic  
field by applying Green ' s  funct ion techniques.  Hor ing (1965) analyzed this 
problem in more  detail, part icularly with respect  to perpendicular  p ropaga-  
t ion and damping  associated with the modes.  Subsequent ly  Hor ing  (1969) 
considered in detail the longi tudinal  static limit and the effective dielectric 
screening parallel and perpendicular  to the field. Celli and Mermin (1964) 
determined the long-wavelength oscillation o f  a quan tum plasma in a 

uni form magnet ic  field. They also calculated instability in the quan tum 
helicon dispersion relation (V. Celli and N. D. Mermin,  unpubl ished) .  
Quinn  and  Rodr iquez  (1962) calculated all the elements o f  the dielectric 
tensor  for spinless electrons for  parallel and perpendicular  propagat ions .  
The static limit o f  these elements was used by Quinn (1963) to calculate 
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the diamagnetic susceptibility of this system. Canuto and Ventura (1972) 
also calculated the dielectric tensor for spinless electrons for an arbitrary 
angle of propagation. Kelly (1964) and Ron (1964) used a quantum kinetic 
approach to calculate the dielectric tensor for waves propagating along and 
across the magnetic field. 

In our problem we treat an electron plasma in a constant, homogeneous 
magnetic field exactly; a perturbation approach in the photon field is used 
in deriving the general expressions for the dielectric tensor (Canuto and 
Ventura, 1972). In laboratory plasmas the magnetic field is of order 105 G, 
which is very small compared to the 10~SG found in pulsars. At the 
superstrong magnetic fields probably associated with neutron stars we have 
an interesting situation with the Fermi energy of the Landau levels, p2/2m << 
hi]. Only the lowest n = 0 level is then populated, and the mobility of the 
electrons is therefore entirely determined by the value P~, thus giving rise 
to a one-dimensional electron gas. Low density, as well as an intense 
magnetic filed, is necessary for this situation to be realized, since at densities 

t)28 1~3/2 N > lv ~,12 cm -3, where B~2 = 10 -12 BG, the Fermi energy of the electrons 
becomes large as hIl. Electron densities and fields satisfying this condition 
may arise in the plasma that forms the atmosphere of a neutron star. 

In the Malmberg-O'Neil experiment, the magnetic field is of order 
105 G. When this is substituted into the above condition, we find for the 
critical density Nerlt = 10 7 c m  -3,  which is greater than the experimental 
density, Nexp~-1015cm -3. The critical temperature is Tcrit=h~/kB = 
4.17 x 10 -4  K ,  which is also much higher than the experimental temperature. 
All these lead to the population of the lowest Landau level only. 

In Section 2 it is shown briefly how the components of the dielectric 
tensor are obtained; the perturbation method used in obtaining the quantum 
effects on plasmas with and without damping is considered in Section 3. 
Sections 4 and 5 comprise the main body of the work; we determine the 
quantum effects on the whistler mode and the low-frequency extraordinary 
mode for plasmas without and with damping for arbitrary direction of 
propagation, respectively. In the latter case, one has to distinghish between 
"nonresonant" and "resonant" situations, depending on whether the cutoff 
frequency to1 is different from or coincides with the electron frequency 1~. 
Finally, we conclude with a brief summary of the results in Section 4. 

2. DIELECTRIC TENSOR 

The quantum mechanical expression for the dielectric tensor is given 
by (Canuto and Ventura, 1972) 

( (.D p '~ O)p 
e~(kto) = 1 -~-~} ~ +~-~ %,~ (1) 
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where 

1 [ (t.~)mn 
~ = - ~  E .~.pxps w - o o ~ . ( p , p - i f i k J 2 ) +  iv 

(t~)~)mn ] f(e.p) 
o) + tom.(p, p - hkJ2)  + in 

with 

and 

( G~) mn =-~ (nln;~qm)(mtn~'ln) 

1 (nlH~,[m)(m]H~k, ln ) (t('))m, 

w~.(p, p • = (m - n)fl + M  (p + h~k2~)k~ 

(mIII~qn) =" ' ,/2 (-) t(~Mhl2) CmnImn 
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(2) 

(3) 

[1Mh~-~I/2t.~ { i(+)+akl [ 

(m[IIf'ln) = (p +�89 

C,.. = im-" exp(-ia2kipx/  h ) 

Im.(p) = (m !n !)-~/2 exp(_p/2)p(m-.)/2/2Q•_.(o)= I.m(p) 

I~2 = n'/2Im,.-i + (n + 1)1~aim..+1 

P = Pz, k = kz, k, = ky, p = ak,/x/2, a = ( t i /Mt) )  '/2 

The Q~(p) are associated Laguerre polynomials and Im.(p) form an 

(4) 

orthogonal set. The integral over P in equation (2) is performed under the 
analyticity convention, 

1 1 
lira - P �9 i~'8(w + tom,,) (5) 
~9 ~ 0  O) + (.Omn + i~ 7 to + to,.. 

Thus, the principal value of the integral in the equation gives rise to the 
Hermitian (refractive) part of the tensor r ~ ,  while the integral over the 
&function gives the anti-Hermitian (absorption) part. 
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In the degenerate limit, the distribution function f (e)  = 0 (e F-- e) ( 0 is 
a step function) and a Fermi momentum is defined for each Landau level as 

P(vnl = 21/2meF(1 nh---~l l/2 (6) 

and the density of electrons is given by 

Ma2 b~ ~ N =-- -~  n=o 

MIIPo 
= 2 2h 2 (7) 

where 

P o =  2 b.P  ~ 
n = 0  

The components of the Hermitian part of the tensor r~,~ for both the 
whistler and the extraordinary modes for any direction of propagation are 
calculated by applying expansions to equation (2). In the case of the whistler 
mode for m=0,  to/k~oO, and therefore, the equivalent of the Taylor 
expansion is applied, while for m ~ 0, kz ~ 0 and thus the equivalent of the 
asymptotic expansion is used. 

In the case of the nonresonant situation of the extraordinary mode, 
kz ~ 0 for all values of m, and thus the equivalent of asymptotic expansion 
is applied, whereas in the case of resonant situation of the extraordinary 
mode, (to -ml~)/kz-+ 0 for all values of m, and hence the equivalent of the 
the Taylor expansion is applied. 

3. PERTURBATION M E T H O D  

The dispersion relation for plasma modes is given by 

a = I t -  n2TI = 0 

where 

(9) 

n = kc/to (the refractive index) (10) 

T = 11 - kk/k 2 (the transverse operator) 

and r is the dielectric tensor defined by equation (1). When a small perturba- 
tion is applied to the dispersion relation, we find that the frequency of the 
modes is shifted such that 

to = to~ 8to; 6to<< too (11) 
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where (with 0 the angle of propagation) 

I 2 2 2 too= ( ~ k c / t o p )  cos 0 (whistler mode) 
[~tol (low-frequency extraordinary mode) (12) 

is the unperturbed frequency, with to1, top and ~ defined as 

(4<) 
top = - -  (the electron plasma frequency) (13) 

eB 
12 = (the electron cyclotron frequency) 

Mc 

and 

aAl(kw ~ 0) 
6to = 6.to + 6qW = 0Ak(to ~ 0) (14) 

which is obtained by applying the Taylor expansion to the dispersion relation 
about too. Here 3.to is the frequency shift due to refractive effects and t~qto 
is that one due to quantum effects. A~(to ~ 0) is of zeroth order in k and 
defined as 

A~(to ~ 0)=  OAo(to,0to O) ,o=~o ~ (15) 

and A1 is of second order in k. 

4. PLASMAS WITHOUT DAMPING 

As mentioned in the introduction, we determine the properties of the 
whistler mode and the low-frequency extraordinary mode for the cases 
when the propagation is parallel, perpendicular, and at an oblique angle 0 
to the applied external magnetic field, respectively; for perpendicular propa- 
gation neither the whistler mode nor the resonant situation of the extraor- 
dinary mode exist. 

4.1. Whistler Mode 

In this case we consider the frequency of the mode after perturbation 
to be of the form 

2 02 to =to +6(to 2) (16) 
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where the second term on the right-hand side is due to both refractive and 
quantum effects. For parallel propagation we find that 6(o) 2 ) is given by 

~ (tO 2 ) :  2~"~2k6c6 { [ 4  1+ ~ (r/co - r/Fo) ][2@2 (1 --~'l~Fc)'l"]Fc--~,~r~--2"F~c08 1 
(.Op 

1 2+_~_T(r/co_~r/Fo) w4 +(1-2nF~)IY r/co~ (17) +~ 

where 

r/Fc = (p~O))2 = 1.4 x 10 -3 
2 m h f l  

r/Fo = PF(O) /2mhl l - -3 .2  x 10 -12 (18) 

rio o = h ~ / M c 2  ~4 .7  • 10 -1~ 

From these equations we find that r/Fo and 7/co are very small compared 
to ~TFc, and hence their contributions are negligible. Thus, equation (17) 
becomes 

~ - ~ 2 k 6 c 6 r  2_~_r~2 "~ r~~ +122 4 2 _2r/Fc)]r/co 1 / ( D p  ~L D 
,~(,,2) = -2---:~ ~ - - ~  +~-a-~ L - - ~  (1-~nFc +~(1 (19) 

) 

The first term in equation (19) is due to refractive effects; the second 
and third terms are due to quantum effects. For r/Fc --> 3 we have a positive 
quantum frequency shift. We further note that 6(to 2) is of order k 6. 

For propagation at an oblique angle 0 to the magnetic field we obtain 
8(w 2) in the form 

3(w 2) ---g - 1+ ( l+cos  2 0) 32~-TTw 15- sin 2 0 
f o p  . 

_~___e +~-5 1 32 2c] j sin 2 0 a2 2 1 + tan20~] 

 14   tan O,]cos O} 16~2rl2~ 

(tOpSin z0 1 ~% [ 
2t-6-4~2F7 3-4 I'I~F~ ,_(1--~7/Fc)(1 +c~ O) 

sin  o]} 2 

- (2~Fc { [1 +-~-~2 ( 1 +tan2 0~ :~zrl~c/ 
] = - - 7 .  j (1 - ~ , ~ c )  cos ~ o 
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+ o~ (l-~)s~n~ (1+~) [ . _ ~ ,  ~os~ o+ o 1 
fop 

- 2  ~-2 [(1 - 2rive) cos 20 +3 sin 20] 

- -2  1 '4 top (1 -- 4'r/F c tan 0) 
16~2r/Fc 

+ ( 1  w2 1 +~)(~ ~;~:)t~no}~os~o 
1 - ~ c ) [ ( 1  - ~ )  cos ~ 8;2c (1 4 0 + ( 1  8 1 / ) s i n  2 0 ] )  

(1 -~TF~) sin 20 - 4-~F~ (1-4r/F~) 

xb-~os~o+(~-~ts in~o  ] 
_ l [ s i n 2 0 +  1 [(I_%IF~)(I+cos20)+(I_ 1-~]sinZO] } 

2 [ 16~Fc  "qVc \ 8rlFc] 

( [  / t a n Z 0 \ l  
x 1 +-~z | 1 +TT----?-// cos20 a \ 32~7vc,].] 

o2,, {[ 4 
2~-g~-F~ (1 - irlF~)(1 + cos 2 

o) 2 

o~+(1_~) sin~ O] 
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The contributions of fiFO and ~?c0 are again negligible compared to those of 
~?Fc. As a result, equation (20) becomes 

~4k6c6 [ ( ~  
6(o)2) = 8 1+~-5 ( l + c ~  

(.,Op 

wp 15 - 1 32~2~7Fc sin 2 0 cos 2 0 (21) 

This shows that the quantum frequency shift is negative for ~F~ > ~o. As the 
angle of propagation 0 approaches 0 ~ the quantum shift term of equation 
(21) also approaches zero and the contribution of ~/co in equations (20) 
becomes noticeable; this finally leads to equations (19) at 0 = 0 ~ 

(20) 
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4.2. Extraordinary Mode 

After a small perturbation has been applied to the dispersion relation 
we find that the resonant situation of the extraordinary mode has a frequency 
shift of the form 

w=wl+6oJ=ml~+6oJ (m = 1 ,2 ,3 , . . . )  (22) 

whereas that for the nonresonant situation of the extraordinary mode is of 
the form 

w=wl+6oo~m~+8o~ (m = 1, 2 , 3 , . . . )  

From the above we know that at resonance 

(w -ml I ) / k z  ~O 

for all values of m. Since we determine the frequency shift of order one, 
only the m = 1 case is considered, although for a frequency shift of order 
m, the general condition is still valid. In our case the cross terms of resonance 
and nonresonance constituting C1 are of order 1)-2~c0 smaller than the 
terms of order Bo~-2k2c 2, and hence can be ignored. C1 is of second order 
in k and is the component of A1, i.e., 

m I = Bo~-Zk2c 2 + C 1 (24) 

and Bo is a function of k-independent components of the dielectric tensor. 
It is therefore sufficient to obtain the components of the dielectric tensor 
only to order zero. This allows us to have the expansions 

InlM(w -f~)  + kz(P(v~ khz/2)] = InlM~w • (p(O) + hkz/2)l 

~- • (25) 

for the resonant term and 

in]M(w+a)ikz(n(vo)• ,~(o)+ 21))•  hkz/ 2 )l 

= •  (26) 

for the nonresonant term of the resonant situation of the extraordinary 
mode, respectively. 

Nonresonant case: For propagation parallel to a magnetic field we find 
that the frequency shift is given by 

k2c2 [(~ ( 4 ~ ) ] 
6w 2w,+ l )  [_ ~ + 1 3 w,+-----~ r/Fc ~7co (27) 

This shows that resonance does not exist for parallel propagation. It can 
also be seen that the frequency shift due to quantum effects depends on 
r/Fc and is positive for all values of ~Fc- 
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When the direction of propagation is perpendicular to the magnetic 
field the frequency shift is of the form 

k2c 2 [(to,+f~)2 w l + l )  ] 
8oJ = 2~ + - - - - ~  ~ L ~ F - - w l  + 21q r/~o.] (28) 

Equation (28) shows that resonance does not exist in order k 2. But the k 4 
term, which is due to a second-order frequency shift, has a resonance at 
oJ 1 =l~ and wl =2f~ as in classical plasmas. Thus, as we approach the 
neighborhood of ~ and 21~, the second-order frequency shift becomes 
infinitely large and we cannot ignore its contribution. 

Turning now to the situation in which the direction of propagation 
is at an arbitrary angle 0 to the magnetic field, we find the frequency 
shift 

k2c 2 ~( to l+a )  2 
6w = 2 ( 2 w , + ~ )  [ ~ (1-1- c~ 0) 

+ 1 3(~o1+~) ~TFc COS2 0-~ W1+21~ sin 2 0 rio0 (29) 

This leads us to conclude that resonance does not show up in the k 2 term. 
However, as in classical plasmas, in the neighborhood of f~ and 2ll the 
second-order frequency becomes infinitely large and its effects cannot be 
ignored. We also note that the quantum frequency shift is positive for all 
values of ~F~ and 0. 

R e s o n a n t  case: When the direction of propagation is parallel to the 
magnetic field the frequency shift is given by 

&O = (4~)2-- 3092) ~'~-lev k 2 --'TT3-,, (30) 
to pM 

However, equation (27) shows that resonance does not exist in this situation. 
This implies that equation (30) is not the frequency shift of the resonant 
situation of the extraordinary mode, but that of the cyclotron mode. 

In the case where the direction of propagation is at an oblique angle 
0 to the magnetic field we find that the frequency shift is given by 

I 4 1 
(./)p ~'~--1 eF 

3w= (41)2-3toE)cos20+ 2 l)2sin20 toE--- ~ (31) top-- 
It is already known from the above that the frequency shift of order lower 
than k 4 does not have a resonance; we therefore conclude that equation 
(31) is not the frequency shift of the resonant situation of the extraordinary 
mode, but that of the cyclotron mode. It is also known that at resonance, 
top > ~ ,  and therefore the third term is positive in that situation. 
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5 .  P L A S M A S  W I T H  D A M P I N G  

From equation (2) we obtain the anti-hermitian part of r~,~ as 

"r A =--iTr ~ b , f (Enp) ( t~ )m , [~ (w- to , , , ) - 3 (w+tom. ) ]  
~v N mnPxPS 

i rr f co M t) 
= ~ ff~ b, -o~ 2(~h) 2 dpf(E,p)[8(to - tom~) - 8(a) + tom,)] 

i~rM [ ( ( ~  k~h 12\ 2 1 ) 
- P o N k z  .,. ~ b.(~'~),.. 0 + 2 M + ~ )  _~_~(p(.))2 

_ O ( ( t o  kzh t))2 1 ) ]  
2M ~ - M  -~(p(F#))2 

Equation (32) shows that the damping domain is given by 

tOmi  n < O) < (.Oma x 

where 
kzp(F "> k2h 

It) tOr, i, = M 2 M 

~O~ax = k~ P~) k2zh lt) 
M 2 M  

for the first term of the equation and 

t O m a  x = - - - - .  

OJrnax 

kzp (') 4- h2k'-: + IFI 
M 2 M  

kzp(F .) k 2 

M 2 M  

(32) 

(33) 

(34) 

(35) 

for the second term of the equation. In our case n = O; therefore, equations 

p(F~ hk2z 
s n - -  m ~ ~  

M 2M 

p(F~ hk 2 
tOma x - -  § - -  mr/ 

M 2M 

P(F~ hk~ 
M 4-~-~+ m ~  (X)mi n 

(36) 

_ P(F~ hkz 
O ) m a  x - -  "4- mt) 

M 2M 

(34) and (35) become 

and 

(37) 

respectively. 
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5.1. Whistler Mode 

In this case, we consider only m - - 0  contribution as k-~ 0 as in the 
undamped plasmas. As can be seen from Figure 1, this is the only equation 
that could give a contribution. This causes equations (36) and (37) to become 

P(F~ k~h 
tOmi n 

M 2M 
(38) 

p(F~ k2h 
O)max 

M 2M 

and 

O) mirl 

tOmax 

p(F~ ttk 2 
M 2M  

p(F~ ~ hk 2 
M 2 M  

(39) 

respectively. 
For parallel propagation, (tg~),,, becomes 8,,,, +1. But, as already stated, 

only m = 0 contributes. This implies that there are no damping effects in 
this situation. For oblique propagation there could be damping. However, 
from Figure 1 we find that the damping effects cancel out in regions denoted 
by Oi (i = 1, 2, 3 , . . . ) .  But the whistler mode is the region O1 and O2; hence 
we conclude that there is no damping effects on the whistler mode. This 
feature is the result of the quasi-one dimensional character of the electron 
distribution. 

5.2. Extraordinary Mode 

Nonresonant case. From equations (36) and (37) we find that the 
nonresonant situation exists for m r 1, 2, 3 , . . . .  As a result of this require- 
ment we find that the components of the anti-Hermitian part of  7~,~ vanish. 
Therefore, we conclude that there is no damping effect on waves in this case. 

Resonant case. The components of dielectric tensor are obtained by 
considering the m = 1 situation to the lowest order in k in any direction of 
propagation. By going through the same procedure as that for undamped 
plasmas, we obtain the dispersion relation for parallel propagation to be 
of the form 

3 W2p oa~ [.  M S w - k P ( ~  
1 - ~  ~--~+ 21~Pok [ ' ~ ' + l n  M--~w+ kP~v ~ (40) IJ 
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'13 

0 ~,(pfto~/M ) - ~  

o / 

Fig. 1. Pair excitation boundaries, determining damping: a~ (in units of top) versus kz (in units 
of P~F~ There is no damping in regions denoted by Oi, where i = 1, 2, 3 . . . . .  The whistler 
mode exists in regions 01 and P2. 

so  l o n g  as  

&o < P(F~ M 

w h i c h  c a n  a l so  b e  e x p r e s s e d  as  

3to~ to~ M&o-P~F~ 
1 - - - ~ -  ~ + 2 ~ P o k 4 1 2  " In M&o + P~~ - 0 

(41)  

(42)  
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The imaginary term in equation (40) is absorbed in equation (42). , f  equation 
(40) is expanded in 6o), we obtain 

. 2f~k2 [ /  3o)p~\ K] 
3o) y + j (43) 

where 

K 2 = Mo)Z/2ev (44) 

This is not true, since there is no instability in an equilibrium system which 
is being considered. In order to get the right solution of equation (40), we 
solve it without expanding it in 8w, as follows: 

�9 M6w - P(F~ 412 [ 3w~\  k 
In MSw + P~~ - O)Z ~' ' - 4 -~)  ; (45) 

Thus 

where 

aw = 21/212A(A)k/K (46) 

1 + exp(-AkK-l) 
A(A) - 1 - exp(-AkK-1) (47) 

where ,~ 

= o)-;- - d9 (48) 

From equation (54) we find that 

A(A)> 1: A>0  
(49) 

< , :  A<0  

Figure 2 shows that 6o) lies outside the damping domain given by Figure 
1. This allows us to conclude that the cyclotron mode is not damped in this 
case. Further, for )tkK-l<<' we recover the result for plasmas without 
damping. 

For propagation at an arbitrary angle 0 to the magnetic field the 
dispersion relation after a small perturbation is applied in the vicinity of 
the resonance is given by 

3o) . t ', G 4 . . - - -  - ---  ( ' - ~  1~2] \ - -  1 2 2 ) - ~  tan2 0 +~-~ ( ' -~-7)o)~\K~ In M6o)M6w-P~F~ P(F~ (50) 

This leads to 

r~OJ = 21/2hA(X) k cos 0 ( 5 , )  
K 



8 4 8  Genga 

qC 

o~ 

\ 
T ,.,,, 

Fig. 2. The function A (in units of A) versus A (in units of tOp). See text. 

where 

4 

= A COS 0 + top sin 2 0 see 0 (52) 
2 2 4fl ( tOp-f l  E) 

Equation (49) is still satisfied for A; this implies that Figure 2 is also valid 
for A. Since Figure 2 shows that &o lies outside the damping domain given 
by Figure 1, we conclude that there is no damping effect on the cyclotron 
mode, as we are already aware that there is no resonance for the frequency 
shift of  order lower than k 4. Also, for Akff I << 1 the result for plasmas without 
damping is recovered. 

6. C O N C L U S I O N  

We find that the whistler mode is undamped  in any direction of 
propagat ion for all but very high k values. This is a consequence of  the 
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one-dimensional character of the situation. The frequency shift due to 
quantum effects is found to be of order k 6 and angle-dependent, and is 
either positive or negative, depending on the value of ~TFc, the ratio of Fermi 
energy to the level separation. 

We also find that the extraordinary mode is undamped in any direction 
of  propagation. For nonresonance the frequency shift due to quantum effects 
is of order k2; it is also r/Fc- and angle-dependent. We further find that 
resonance exists for a frequency shift due to quantum effects of  order k 4 

and higher powers of k and for oblique propagation; the frequency shift 
of  order k 2 that is formally obtained in this case is the frequency of  an 
independent cyclotron mode. The cyclotron mode is also seen to be ~TFc- 
and angle-dependent. 
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